GF40: 3.3V GPIO

Libraries

Name	Process	Form Factor
RGO_GF40_25V33_LP_20C	LP	Staggered CUP
RGO_GF40_25V33_LP_40C	LP	Inline CUP

Summary

The 3.3V GPIO library provides general purpose bidirectional I/O cells. These programmable, multi-voltage I/O's give the system designer the flexibility to design to a wide range of performance targets.

Additionally, this library provides a full complement of cells to support the assembly of a functional pad ring by abutment for GPIO and other I/O library offerings from Aragio Solutions that use a compatible pad ring bus structure.

This 40nm library is available in both staggered CUP and inline CUP wire bond implementations with a staggered flip chip option.

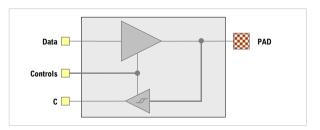
The included rail splitter allows multiple power domains to be isolated in the same pad ring while maintaining continuous VDD/VSS for robust ESD protection.

ESD Protection:

- JEDEC compliant
 - 2kV ESD Human Body Model (HBM)
 - o 200V ESD Machine Model (MM)
 - o 500V ESD Charge Device Model (CDM)

Latch-up Immunity:

- JEDEC compliant
 - Tested to I-Test criteria of ± 100mA @ 125°C


Cell Size & Form Factor

- Staggered (pad-limited) 20µm x 180µm
- Inline (core-limited) 44µm x 92µm

Recommended operating conditions

	Description	Min	Nom	Max	Units
V_{VDD}	Core supply voltage	0.90	1.0	1.10	V
		0.99	1.1	1.21	V
		1.08	1.2	1.26	V
V _{DVDD}	I/O supply voltage	2.97	3.3	3.63	V
		2.70	3.0	3.30	V
		2.52	2.8	3.08	V
		2.25	2.5	2.75	V
		1.62	1.8	1.98	V
T_J	Junction temperature	-40	25	175	°C
V_{PAD}	Voltage at PAD	V _{DVSS} -0.3	-	V _{DVDD} +0.3	V

SRx_BI_SDS_33V_STB

Bidirectional GPIO Driver Features

- Multi-Voltage (1.8V, 2.5V, 2.8V, 3.0V, 3.3V)
- LVCMOS / LVTTL input with selectable hysteresis
- Programmable drive strength (rated 2mA to 12mA)
- Selectable output slew rate
- Optimized for EMC with SSO factor of 8
- Open-drain output mode
- Programmable input options (hi-Z/pull-up/pull-down/repeater)
- Power-On Start (POS) capable
- Power sequencing independent design with Power-On Control

In full-drive mode, this driver can operate to frequencies in excess of 100MHz with 15pF external load and 125 MHz with 10pF load. Actual frequency limits are load and system dependent. A maximum of 200 MHz can be achieved under small capacitive loads.

Support Cells

Name	Description		
Digital Pads			
STx_IN_001_33V_NC	Input-only buffer		
I/O Power / Ground Pads			
PWx_VD_PDO_33V	I/O power (DVDD) with POC		
PWx_VD_RDO_33V	I/O power (DVDD)		
PWx_VS_RDO_33V	I/O ground (DVSS)		
Core Power / Ground Pads			
PWx_VD_RCD_12V	Core power (VDD)		
PWx_VS_RCD_12V	Core ground (VSS)		
Analog Pads			
ANx_BI_DWR_33V	Isolated analog input cell		
Analog Power / Ground Pag	Analog Power / Ground Pads		
PWx_VD_ANA_12V	Analog power (AVDD) 1.0V		
PWx_VS_ANA_12V	Analog ground (AVSS)		
PWx_VD_ANA_33V	Analog power (ADVDD) 3.3V		
PWx_VS_ANA_33V	Analog ground (ADVSS)		
Support Pads			
SPx_CO_000_33V	Corner cell (rail splitter)		
SPx_CO_001_33V	Corner cell (continuous)		
SPx_SP_000_33V	0.1µm spacer		
SPx_SP_001_33V	1µm spacer		
SPx_SP_005_33V	5µm spacer		
SPx_SP_010_33V	10µm spacer		
SPx_RS_005_33V	Rail splitter		

GF40: 3.3V GPIO

Characterization Corners

Nominal VDD	Model	VDD	DVDD [1]	Temperature
	FF	+5%	+10%	-40°C
	FFF	+5%	+10%	125°C
	FFF	+5%	+10%	150°C
	FFF	+5%	+10%	175°C
1.2	TT	nominal	nominal	25°C
	SS	-10%	-10%	-40°C
	SS	-10%	-10%	125°C
	SS	-10%	-10%	150°C
	SS	-10%	-10%	175°C
	FF	+10%	+10%	-40°C
	FFF	+10%	+10%	125°C
	FFF	+10%	+10%	150°C
	FFF	+10%	+10%	175°C
1.1 / 1.0	TT	nominal	nominal	25°C
	SS	-10%	-10%	-40°C
	SS	-10%	-10%	125°C
	SS	-10%	-10%	150°C
	SS	-10%	-10%	175°C

[1] DVDD = 1.8, 2.5, 2.8, 3.0 and 3.3V

CUP Cells

Staggered CUP Cells	
CUP_GF40_70P1X33P4_IN	70.1µm X 33.4µm Inner
CUP_GF40_70P1X33P4_OUT	70.1µm X 33.4µm Outer
CUP_GF40_70P1X48P4_IN	70.1µm X 48.4µm Inner
CUP_GF40_70P1X48P4_OUT	70.1µm X 48.4µm Outer
CUP_GF40_FC	Flip chip structure
CUP_GF40_82P5X59P4_IN	82.5µm X 59.4µm In - Cu bond
CUP_GF40_82P5X59P4_OUT	82.5µm X 59.4µm Out - Cu bond
CUP_GF40_W48P4XL82P5_IN	48.4μm X 82.5μm In - Cu bond
CUP_GF40_W48P4XL82P5_OUT	48.4μm X 82.5μm Out - Cu bond
Inline CUP Cells	
CUP_GF40_INL_84X37P4	84µm X 37.4µm Inline
CUP_GF40_INL_84X50	84µm X 50µm Inline

$\ensuremath{\mathbb{O}}$ 2006-2022 Aragio Solutions. All rights reserved.

Information in this document is subject to change without notice. Aragio Solutions may have patents, patent applications, trademarks, copyrights or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Aragio, the furnishing of this document does not give you any license to the patents, trademarks, copyrights, or other intellectual property.

Published by:

Aragio Solutions
2201 K Avenue
Section B Suite 200
Plano, TX 75074-5918
Phone: (972) 516-0999
Fax: (972) 516-0998
Web: http://www.aragio.com/

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. This document may be reproduced and distributed in whole, in any medium, physical or electronic, under the terms of a license or nondisclosure agreement with Aragio.

Printed in the United States of America